ULTRACELL蓄电池(电气)Co., Ltd
采用瞬时大电流脉冲试图修复短路的电池,其成功率极为有限。这种短路可能暂时被蒸发,但是对隔膜材料的损伤依然存在。这种修复后的电池常表现有高的放电率并且短路还会再次出现。在一个已老化的电池组中更换某个短路电池并非可取。除非这个新电池在电池电压和容量上与电池组中的其它电池性能一样是匹配的。
电解液的损耗
蓄电池虽然都是密封的,但在其使用寿命期间会损失一些电解液,特别是如果由于粗心不适当充电产生过大的气体压力以致出现气体排放。一旦出现气体排放,在镍基电池上的弹簧加压的排气密封垫可能难以完好地再封闭,从而造成密封垫周围淀积起白色粉末,电解液的损耗终将降低电池容量。
渗透或是在气阀调节的铅酸电池(VRCA)中电解液的损耗是一个久已存在的问题。其原因是过充以及在高温下工作造成的。用加水补充电解液的损耗成效是有限的,虽然可以部分地恢覆电池容量,但电池的性能将不甚可靠。
如果正确地充电,锂离子电池应不产生气体以致出现排气的问题。但是锂离子电池在某些条件下也会产生内部压力。某些蓄电池内部配置——电路开关,当电池压力到某个临界值时,该开关可切断电流。另外有些电池则设计成一种可控的方式或打开安全隔膜以释放气体。
目前大部分后备电源(直流系统,UPS等)中用蓄电池组来实现能量的存储。UPS供电的后一道保障的蓄电池组的性能尤为重要。基于半导体变流技术及成本的原因,一直采用的充电方式是如图1所示的单充电机对整组串联蓄电池充电。
充电机以恒压限流方式永远与电池组并联在一起,理论上当电池组容量损失后,充电机将自动补充,但在实际应用中发现这种系统存在以下几方面问题。
首先,单体蓄电池特性存在较大差异,即便是同一批出厂的蓄电池其特性也偏差较大(在国产电池中表现的尤为突出),因此在运行中将其作为一个整体一起充放电,无法根据单电池运行参数运行状态进行充放电,势必造成某些电池过充电或欠充电,也可能引起过放电,这也是为什么蓄电池在成组运行时普遍达不到标称寿命的重要原因之一。
在此种运行方式中检测单体蓄电池的电压、内阻是比较困难的。现在普遍采用的是单独加装蓄电池检测装置,但蓄电池检测装置又不能很好的和充电机配合。从以上两点可以看出在此系统中按蓄电池状态(电压、内阻、剩余容量、温度等参数)及充电曲线对蓄电池进行管理只不过是一句空话。另外单独加装蓄电池检测装置也势必造成成本的上升。